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Abstract

Honeycomb sandwich panels have been increasingly used in every possible field, and their efficient load carrying
capacity attributes have attracted considerable attention. All previous studies have been focused mainly on stiffness,
neglecting for the most part skin effects. This paper represents an important further contribution by developing an ana-
lytical model that permits the computation of stiffnesses as well as interfacial stresses considering the skin-effect for hexa-
gonal honeycomb sandwich, subjected to in-plane and out-of-plane forces. An explicit analytical model is derived based
on equilibrium equations, where boundary conditions imposed by the skin effect are appropriately considered. The
accuracy of the solution is verified through close correlations with existing stiffness formulations and finite element
results. The skin effect on both stiffness and interfacial stress distribution is analytically defined. The present model
is then used to carry out a parametric study on interfacial stresses, and to detect the critical sections in the structure
where further consideration should be given for design purposes. The method provided in this study can be used for
accurate analysis and design of sandwich structures.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A typical sandwich panel is made of two stiff skins, separated by a lightweight honeycomb core. It may
be designed so that each component is utilized to its ultimate limit. This feature makes sandwich structures
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attractive in various engineering fields where stiffness and strength must be met with minimum weight (Vin-
son, 1999). The concept of sandwich construction has been traced back to the mid 19th century (Fairbairn,
1849), while the broad introduction of the sandwich concept in aircraft structures started at the beginning
of World War II. Nowadays sandwich panels and shells have been widely used in aerospace, shipbuilding,
civil infrastructure and other industries (Davalos et al., 2001).
Conventionally hexagonal honeycomb sandwiches (see Fig. 1) have been applied in the aerospace indus-

try since the 1940�s, and have been increasingly used in every possible field. The commonly used core mate-
rials include aluminum, alloys, titanium, stainless steel, and polymer composites. Apparently, the
computational models on honeycomb sandwiches are generally based on the equivalent replacement of
each component with homogeneous continuum, due to expensive computation of 3-D detailed properties.
Therefore, to accurately represent the equivalent properties has been a perennial challenging topic that at-
tracted a lot of investigations. From Fig. 1, one can intuitively conclude that honeycomb sandwich struc-
tures behave like I-beams: the outer facesheets correspond to the flanges, and carry most of the direct
compression/tension bending load, and the lightweight core corresponds to the I-beam web. The core sup-
ports the skins, increases bending and torsional stiffness, and carries most of the shear load (Noor et al.,
1996). This characteristic of a three-layer arrangement leads to classical sandwich theory (Allen, 1969;
Zenkert, 1995). Unlike the facesheet, which can even be a laminated plate, the equivalent properties of hon-
eycomb cores are more complicated. A lot of research has been devoted to this area. These include Warren
and Kraynik (1987), Gibson and Ashby (1988), Fortes and Ashby (1999), and included in the book of Gib-
son and Ashby (1988) is the first systematic literature review in the field. All these mathematical models are
based on pure cellular structures and the presence of the facesheet is not considered. As a result, the existing
analytical solutions do not agree well with experimental results (Shi and Tong, 1995).
In order to more accurately describe the elastic moduli of the core, Penzien and Didriksson (1964) intro-

duced the concept of warping effect, or skin effect, into the model. Later Grediac (1993), Shi and Tong
(1995), Becker (1998), and Xu and Qiao (2002) further considered this effect in their studies. It is interesting
to point out that different researchers defined this effect in different ways, such as warping constraint by
Penzien and Didriksson (1964), thickness effect by Becker (1998), bending effect by Grediac (1993), and skin
effect by Xu and Qiao (2002). Recently Chen and Davalos (2004) decomposed this effect into shear and
bending warping effects. However, all of these studies, either using 2-D model or finite element (FE)
method, were focused on the stiffness study only, and no work is available on the stress distribution at
the interface, partly due to the following reasons: (1) the skin effect introduces a complicated stress field
Fig. 1. Sandwich panel with hexagonal honeycomb core (from Noor et al., 1996).
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at the interface, which is difficult to model; and (2) unlike the modelling of stress distribution, acceptable
results can be obtained for stiffness, which is a global property, even if an approximate displacement func-
tion is assumed.
Several studies (e.g., Chen and Davalos, 2003) have shown that delamination of the core from facesheet

is a typical failure mode for sandwich panels. Since stress concentration can act as a criterion to predict the
onset of the delamination, there is a need to further investigate stress field at the interface. Therefore, the
aim of this study is to present an analytical model allowing the calculation of the stiffness of honeycomb
cores as well as the interfacial stress distribution considering skin effect, both under in-plane and out-of-
plane forces. The present results obtained constitute upper limits of actual values, since the commonly used
rigid facesheet assumption is also adopted in this study, which neglects the bending stiffness contributions
of actual facesheets.
2. Literature review

A comprehensive review of the computational models on honeycomb sandwiches was given by Noor
et al. (1996), where numerous references were cited. Xu and Qiao (2002) provided a review specifically
on stiffness studies of hexagonal honeycomb core. Basically, all existing studies can be organized into two
groups.
2.1. Neglecting skin effect

The practice of neglecting skin effect is prevalent in today�s sandwich research and design, wherein a
uniform stress distribution in the walls of the structure is assumed. The in-plane elastic properties were
first obtained by Gibson and Ashby (1988), where conditions of uni-axial loading and bi-axial loading
were considered. Masters and Evans (1996) further refined the analysis attempting to consider stretching
and hinging effects. Kelsey et al. (1958) firstly applied energy method to calculate the transverse shear stiff-
ness, and showed that the theory of minimum potential energy, a kinematically compatible uniform strain
field, gives an upper bound; and the theory of complementary energy, a statically compatible uniform stress
field, gives a lower bound, corresponding to zero and infinitely large skin effect, respectively. The expres-
sions for these two bounds were provided in terms of unit load and unit displacement method. Gibson
and Ashby (1988) presented the predictions for transverse shear stiffness using mechanics of materials
and energy method. In parallel to energy method, a good attempt was made by Shi and Tong (1995) in
presenting an analytical solution for hexagonal honeycomb core using a 2-D homogenization
method and obtaining the lower bound value. Xu et al. (2001) further extended it to general honeycomb
configurations, where they developed an analytical approach with a two-scale asymptotic homogenization
method.
2.2. Considering skin effect

As observed in experiments (Adams and Maheri, 1993; Daniel and Abot, 2000), skin constrain was dem-
onstrated by the phenomenon of skin lateral contraction and expansion. Rather than assuming a uniform
stress field, Penzien and Didriksson (1964) formulated a displacement field for transverse shear problem to
simulate the warping effect induced by the facesheet. For the first time they showed the trend that as core
height increases, the transverse shear stiffness decreases. Recently Xu and Qiao (2002) applied a multi-pass
homogenization method to study the stiffness for transverse shear, in-plane stretch and out-of-plane
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bending. In both of these studies, the inclined panel was unfolded into the plane of flat panel, and therefore,
the solution corresponds to a 2-D model. Grediac (1993) applied FE method to study core cells with dif-
ferent core configurations, and he studied the stress distribution in core walls. He concluded that the skin
effect is a localized phenomenon limited only to the region adjacent to the interface. However, due to the
cumbersome modelling work required by FE analysis, his study was only case-specific and not applicable to
carry out general parametric studies.
Unlike the equivalent shear stiffness of honeycomb core, the skin effect on other stiffness compo-

nents received less attention. The only literature that could be found on equivalent in-plane moduli
considering skin effect was the work by Becker (1998). He derived a closed-form solution to predict
the in-plane moduli and compared them with FE results. However, his solution is implicit, making
it difficult for practical use. A further expansion was attempted recently by Hohe and Becker
(2001a) to include all stiffness components for general honeycomb cores, but still using implicit
calculations.
Burton and Noor (1997) used detailed FE models to examine the effect of the adhesive joint on the load

transfer and static responses of sandwich panels. However, they used strain energy for discrete components
to discuss the effect of various parameters, a method which does not consider delamination. Through a rig-
orous asymptotic analysis, Hohe et al. (2001b) provided a solution to the stress fields in the cell walls of
hexagonal honeycomb cores in the form of a power-law function. They pointed out that the stress singu-
larity occurs at the intersection of the cell walls at the core facesheet interface. Considering the stress con-
centration and singularity due to deformation incompatibility associated with the facesheets and cellular
core, they used a continuum mechanics method to assess the delamination hazard by the skin effect (Hohe
and Becker, 2001c). They concluded that the additional strain energy release, which is caused by skin effect,
controls the nucleation and growth of microcracks which lead to large scale delamination at a later stage.
However, in both of the above analytical studies, the displacement function was pre-defined, either using a
power-law function (Hohe et al., 2001b) or hyperbolic cosine function (Hohe and Becker, 2001c), without
direct physical meanings. Therefore, it is advantageous to develop a method based on basic equilibrium
equations to calculate the stiffness as well as the interfacial stresses, which is the motivation of this
study.
3. Objectives and scope

Due to their extensive industrial application, the immediate focus of this study is on sandwich structures
with hexagonal core. Perfect bonding between core and facesheet, and between neighboring core walls is
assumed. This implies that there are no delaminations or discontinuities present. Another assumption made
in this study is that although the core walls are thin-walled structures, buckling under compression is
disregarded.
The aim of this study is to present an analytical model accounting for skin-effect to allow the calculation

of the stiffness of honeycomb cores as well as the interfacial stresses, both under in-plane and out-of-plane
forces. Specifically, the objectives are:

1. Based on equilibrium conditions, derive a model that can accurately describe the displacement field for
core walls.

2. Use this model to calculate stiffness and interfacial stresses, compare the results with existing and FE
results, and define the skin effect on stiffness and interfacial stresses.

3. Carry out a parametric study on interfacial stresses, and identify the critical section in the structure
where further consideration should be given for design purposes.
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4. Out-of-plane shear behavior

4.1. Origin of shear warping

A honeycomb can be considered as an interconnected network of plates which form the faces of cells
(Fig. 2). Following the definition by Grediac (1993), it can be characterized by four dimensionless aspect
ratios:
R1 ¼
t
b
; R2 ¼

a
b
; R3 ¼

h
a
; R4 ¼

t0

t
ð1Þ
where h = height of core. It is assumed that the cell walls predominately carry load through membrane
strains, and that the bending forces and bending effects in the cell walls can be neglected, which is consistent
with a formulation for shear warping defined by Chen and Davalos (2004). All previous research is based
on this assumption and it is also adopted here. Naturally, the thinner the core walls, the truer is this
assumption.
The displacement field in cell walls can be described at two distinct regions: (1) at a position sufficiently

faraway from the interface, such as at the mid-depth where the effect of rigid facesheet dissipates; this con-
dition can be defined by force equilibrium; and (2) directly at the face–core interface by assuming that the
facesheet is rigid, which is reasonable considering the stiffness ratio between the facesheet and core; in this
case displacement compatibility is invoked, where strain transformation can be used to find the relationship
between local and global strain. Therefore, the purpose of the analysis is to find a displacement field that
can accurately describe these two distinct regions and the transition field in between.

4.1.1. Force equilibrium

Under a shear strain c, the resulting distributed shear flow for a typical cell and its representative volume
element (RVE) are shown in Figs. 3 and 4, respectively, where sf1 and sf2 are shear stresses acting respectively
on the flat and inclined panel; the superscript f denotes force equilibrium. Due to the symmetry of the hon-
eycomb, we can further reduce this cell into a model as shown in Fig. 5, which represents one quarter of one
central wall and one quarter of one inclined wall.
Based on the model shown in Fig. 5, the equilibrium equations neglecting skin effect, i.e., considering the

force equilibrium, can be written as (Gibson and Ashby, 1988)
b

a

θ

t’

t

Fig. 2. Geometry of the honeycomb.
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sf1
t0

2
¼ sf2t ð2Þ

sfxzV ¼ sf1
t0

2

b
2
þ sf2t

a
2
sin h ð3Þ
where V ¼ 1
2
ðbþ a sin hÞa cos h; and a, b, t and t 0 are defined in Fig. 2. Solving for Eqs. (2) and (3), we have
sf1 ¼
2R2 cos h
R4R1

sfxz ð4Þ
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sf2 ¼
R2 cos h

R1
sfxz ð5Þ
The local shear strain can be obtained as
cf1 ¼
sf1
G

cf2 ¼
sf2
G

ð6Þ
where G is the shear modulus of the core material. The equivalent shear modulus Gfxz can then be calculated
as
1

2
GfxzðcÞ

2V ¼
X2
i¼1

Z
V i

1

2
Gðcfi Þ

2 dV i ð7Þ
where the summation represents the contribution of both panels. Using Eqs. (4)–(6) into Eq. (7), we obtain
Gfxz ¼
ð1þ R2 sin hÞR1
2
R4
þ R2

� �
R2 cos h

G ð8Þ
Correspondingly, we have
sfxz ¼ cGfxz ð9Þ

Based on Eq. (6)–(9), the local–global strain relationships due to force equilibrium can be written as
cf1 ¼
2ð1þ R2 sin hÞ
ð2þ R2R4Þ

c ð10Þ

cf2 ¼
1þ R2 sin h

2
R4
þ R2

� � c ð11Þ
where cf1 and cf2 are local shear strains in the flat and inclined panel, respectively, due to force equilibrium. It
is implied that both the flat panel and inclined panel will deform in a straight line, as shown in Fig. 6.

4.1.2. Displacement compatibility
At the face–core interface, the rigid skin strains enforce the following cell wall deflection or strain

transformation
cd1 ¼ c ð12Þ
Curve length ξ

Vertical
displacement
due to shear
deformation

Curve length

A
D

Fig. 6. Assumed deformed shape.
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cd2 ¼ c sin h ð13Þ

where cd1 and cd2 are local shear strains in the flat and inclined panel, respectively, due to displacement com-
patibility, as denoted by the superscript d. Once again, the panels are assumed to deform in a straight line.

4.1.3. Deformation incompatibility

From the discussion above, we can observe that, although the flat and inclined panel will deform in a
straight line under both force equilibrium and displacement compatibility conditions, a deformation incom-
patibility results due to the different strain states. This phenomenon can be described through two steps. In
the first step, the core wall will deform in a way without considering skin effect, where uniform stress and
strain distribution can be assumed, which implies that the upper and lower faces of the core elements are
not constrained in the transverse direction. However, due to the presence of the relatively rigid facesheets,
the core is forced to deform consistently with the skins. Thus, in the second step, due to the deformation
incompatibility, the shear warping will be present at the top and bottom of the flat and inclined panels,
which can be defined as a boundary condition. The formulation can be simplified as a plane-stress problem
subject to a shear strain with the following boundary condition caused by the deformation incompatibility
uiðnÞ ¼ ðcdi � cfi Þn ð14Þ

where n is the local coordinate along the panel, i = 1,2 correspond to the flat and inclined panel, respec-
tively. The final strain state is therefore the summation of the strains obtained for the above two steps.

4.2. Theoretical analysis

Penzien and Didriksson (1964) firstly presented a solution for this problem. However, they assumed the
plate is rigid along the n direction and the component of rn is thereby neglected, which is not reasonable.
A refined derivation is therefore presented as follows. It is noted that the derivation is applicable for both
flat and inclined panels, and therefore, the subscript i is omitted for simplicity.
Consider the element ABCD in Fig. 7, which is cut from the unit cell shown in Fig. 3, subject to a shear

strain c. The equilibrium equations for the stresses acting on the ng plane in the absence of body forces are
B
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Fig. 7. Model cut from the structure.
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orn

on
þ osng

og
¼ 0 ð15aÞ

osng

on
þ org

og
¼ 0 ð15bÞ
The stress–strain relationships are
rn

rg

sng

8><
>:

9>=
>; ¼

E0 mE0 0

mE0 E0 0

0 0 G

2
64

3
75

en

eg

cng

8><
>:

9>=
>; ð16Þ
where, E0 ¼ E
1�m2, G ¼ E

2ð1þmÞ, E = Young�s modulus, and m = Poisson�s ratio. The strain–displacement rela-
tions are
en ¼
ou
on

ð17aÞ

eg ¼
ov
og

ð17bÞ

cng ¼
ou
og

þ ov
on

ð17cÞ
where u and v are the displacement in the n and g directions, respectively. For the consideration of shear
warping, we can assume that there is no stretching in the n direction. Then we have
u ¼ uðgÞ en ¼ 0 ð18Þ
Eq. (16) can then be reduced to
rn ¼ mE0eg ð19aÞ

rg ¼ E0eg ð19bÞ

sng ¼ Gcng ð19cÞ
Differentiating Eqs. (19b) and (19c) with respect to g and n, respectively, substituting into Eq. (15b), and
using Eqs. (17b) and (17c), one obtains
G
o2v

on2
þ E0 o

2v
og2

¼ 0 ð20Þ
From the boundary conditions shown in Fig. 7, u(g) = 0 at both g = h/2 and g = �h/2, and therefore u is
negligible throughout the panel. Then, Eq. (19) becomes
rn ¼ mE0ðov=ogÞ ð21aÞ

rg ¼ E0ðov=ogÞ ð21bÞ

sng ¼ Gðov=onÞ ð21cÞ
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Eqs. (20) and (21) act as the basis for this analytical study. In order to use Fourier series to solve Eq.
(20), appropriate boundary conditions should be considered. To do this, we can add a fictitious plate
DCB�A�, as the mirror image of ABCD, about line CD, with a symmetric displacement field, as shown
in Fig. 8. The boundary conditions can be described as:
vð0; gÞ ¼ vðl0; gÞ ¼ 0 ð22aÞ

vðn; gÞ ¼ vðn;�gÞ ð22bÞ

vðn; h=2Þ ¼
uðnÞ if n 6 l

u0ðnÞ if l < n 6 l0

�
ð22cÞ
where l is the panel length, h is the height, and l 0 = 2l. The function u(n), caused by shear warping, is
defined in Eq. (14), and based on symmetry, u 0(n) can be similarly defined as
u0
iðnÞ ¼ ðcdi � cfi Þðl0 � nÞ ð23Þ
The functions u(n) and u 0(n) are illustrated in Fig. 9.
The solution of the partial differential Eq. (20) with boundary conditions (22) can be obtained by using

Fourier series. Thus, through some simple mathematical transformations, the transverse displacement can
be described as
vðn; gÞ ¼
X1
n¼1

2=l0

cosh nph
2l0l

� �un cosh
npg
l0l

� �
sin

npn
l0

� �2
4

3
5 ð24Þ
where
l ¼
ffiffiffiffiffiffiffiffiffiffi
E0=G

p
ð25Þ

un ¼
Z l

0

uðnÞ sin npn
l0
dn þ

Z l0

l
u0ðnÞ sin npn

l0
dn ð26Þ
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The normal stress rg can be obtained using Eq. (19b) as
rgðn; gÞ ¼ E0ðov=ogÞ ¼
X1
n¼1

2np

l02l cosh nph
2l0l

� �un sinh
npg
l0l

� �
sin

npn
l0

� �2
4

3
5 ð27Þ
Eq. (19c) gives
sngðn; gÞ ¼ Gðov=onÞ ¼
X1
n¼1

2np

l02 cosh nph
2l0l

� �un sinh
npg
l0l

� �
cos

npn
l0

� �2
4

3
5 ð28Þ
The total shear stress can then be calculated as
siðn; gÞ ¼ sfi ðn; gÞ þ sngiðn; gÞ ð29Þ

The normal stress rn can be obtained using Eq. (19a).
Next, the total strain energy is defined as
U ¼
XZ ½siðn; gÞ	2

2G
dV þ

XZ ½rgiðn; gÞ	2

2E0 dV ð30Þ
in order to calculate the equivalent shear modulus Ge as
Ge ¼
2U
V c2

ð31Þ
where U is the total strain energy, V is the volume corresponding to the RVE, c is the shear strain applied
to the structure. The above equations can be incorporated into any mathematical software such as
MATHCAD.

4.3. Verification

4.3.1. Stiffness

Grediac (1993) carried out a comprehensive study on the stiffness of hexagonal honeycomb core using
FE and considering skin effect. In his study, R1 = 0.08, R2 = 1, and R3 is varied between 1 and 10. The
material properties are E = 72GPa and m = 0.31. Four cell geometries were studied: h = 0�, 10�, 20� and
30�. These results are reproduced in the present study for verification purposes. Figs. 10–13 show the shear
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modulus Gxz vs. aspect ratio R3 curves from FE and the present analytical solution, where we can see that
there is a good correlation between the two results, which corroborate the accuracy of the analytical model
derived herein. The upper and lower bounds, and the empirical formulas given in these figures were pro-
vided by Grediac (1993).

4.3.2. Stress distribution

Since there is no study available on the interfacial stresses, FE is further employed to calculate the inter-
facial stress distribution. A partial unit cell of an hexagonal honeycomb sandwich core geometry is shown
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in Fig. 5. Due to the symmetric structure, we can model a quarter-cell, as shown in Fig. 14, where the thick-
ness is t 0/2 for the flat panels and t for the inclined panel. The dimensions and properties of the core mate-
rials are listed in Table 1. ABAQUS (2001) is adopted for the FE analysis. The core walls are modelled with
a four-node shell element, S4, and the model consists of 800 elements. Through a convergence study, this
mesh provided sufficiently accurate results for this study.
In the FE analysis, all the nodes at the top face translate at a uniform displacement in the x-direction.

Thus, the shear and normal stress distributions can be obtained. The boundary conditions are listed in
Table 2, which are the same as those used by Grediac (1993). Fig. 15 shows the stress distributions along



Fig. 14. FE model.

Table 1
Dimensions and properties of core material

a (mm) b (mm) h (mm) t (mm) t 0 (mm) h (�) E (MPa) m

1 1 2 0.08 0.08 10 72000 0.31

Table 2
Boundary conditions of FE model

u v w

AA0 Free Free 0
CC 0 Free 0 0
AB/BC Constant 0 0
A0B0/B 0C 0 0 0 Free
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the top of the inclined and flat panels, as calculated both from analytical and FE results. The local contour
coordinate, n, is directed from A to B (or 0–0.5mm) for the inclined panel, and from B to C (or 0.5–1.0mm)
for the flat panel. A good correlation can be observed from the comparisons, although there are some dis-
crepancies for the shear stress due to some limiting assumptions adopted in this study. These favorable
comparisons illustrate the accuracy of the analytical method for predicting the behavior of the panels under
shear warping.
It is interesting to observe that at the intersection of inclined and flat panel, a significant normal stress rg

either in compression or tension, depending on the shear force direction, arises due to the shear strain in-
duced, making this intersection a critical location in design. This stress drops rapidly at locations away
from the intersection, and reaches zero at the mid-span of both flat and inclined panels. The shear stress
in the flat panel is much higher than that in the inclined panel, indicating that the flat panel carries most
of the shear force. A contour plot of rg from FE is given in Fig. 16, where we can see that the stress at
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the panel-intersection is higher around the core–skin interface, and reaches nearly zero at the mid-height of
the core. This illustrates the stress concentration effect that the skin induces on the core at the interface.

4.4. Application

Using the closed-form solution derived in this chapter, a parametric study is carried out for the interfa-
cial normal stress, rg, at the panel intersection, as shown in Fig. 17. From which, we can observe that rg
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increases as the aspect ratio increases, and reaches a constant value beyond a certain limit, for instance,
R3 
 2 for this case. For h = 0� case, which corresponds to a rectangular shape, rg is a maximum. As h
increases, the interfacial stress decreases. It is expected that when h = 90� i.e., no inclined panel exists in
the core configurations, rg will vanish since no warping will occur.

4.5. Summary and discussion for out-of-plane shear

An analytical solution for a general hexagonal core including skin-effect and subjected to transverse
shear is presented in this section. From the above results, we can conclude:

1. The present analytical solution can successfully predict the behavior of honeycomb cores accounting for
shear warping, both in terms of stiffness and interfacial stresses, which are verified by FE results.

2. The shear modulus can be accurately obtained from this model, minimizing the error caused by neglect-
ing the skin effect. The solution is explicit and easy to implement.

3. The skin effect is a localized phenomenon. The lower bound of the equivalent stiffness can thereby be
adopted if the aspect ratio is high enough. However, the skin-effect can significantly affect interfacial
stress distribution, yielding a coupled stress state, where the normal stress may even be larger than
the shear stress. This indicates that, unlike the common belief that only shear stress occurs when the
structure is under pure shear force, tension force at the interface arises for a sandwich core, especially
at the intersections of core elements, making such locations critical in design. Therefore, special consid-
erations are necessary in design applications.

4. The skin effect described herein affects the stress distribution of both the flat and inclined panel. This
effect on the stress distribution becomes less significant in the area away from the interface.

5. The results provided in this study, together with interfacial shear and flatwise tension test results, can be
used for failure predictions of honeycomb sandwich panels.
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5. In-plane behavior

Unlike the attention that out-of-plane shear has received, there is limited information available on in-
plane behavior, and the only possible work considering skin effect was published by Becker (1998), who
provided a closed-form solution for in-plane moduli and used FE analysis for verification of results. We
note, however, that the displacement function he assumed is empirical and most likely not applicable for
prediction of interfacial stresses. Also, Becker�s solution is implicit and difficult to implement. Therefore,
it is the aim of this study to provide an explicit solution for in-plane behavior, which can not only predict
stiffness but also interfacial stresses.
5.1. In-plane stretch

As discussed in Section 4, there are two distinct displacement fields for a sandwich core when considering
skin effect: force equilibrium at the mid-depth and displacement compatibility at the interface. The expres-
sions for these two fields are given as follows.
5.1.1. Force equilibrium

Strain state subjected to e0x
When a uniform strain of e0x is applied to the structure, as shown in Fig. 18, axial forces F1 and F2 in the

flat and inclined panel result. When a unit height is considered, it is found that
F 1 ¼ F 2 sin h ð32Þ

rf1 ¼
F 1
t0=2

rf2 ¼
F 2
t

ð33Þ
where rf1 and rf2 are axial stresses due to force equilibrium in the flat and inclined panel, respectively.
The strain energy can be written as
U ¼
XZ ðrfi Þ

2

2E
dA ¼ F 21

b
2Et0

þ a

4Etsin2h

� �
ð34Þ
F2

F1

b/2

a/2

x

y

θ
εx

0

t’/2

t

Fig. 18. Model subjected to e0x .
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The apparent strain value in the flat panel, ef1, can be calculated through Castigliano�s second theorem. The
theorem states that under the principal of superstition, a partial derivative of the strain energy with respect
to an external force gives the displacement corresponding to that force. In this case, the displacement in the
x-direction can be obtained as
oU
oF 1

¼ 1
2
ðbþ a sin hÞe0x ð35Þ
Substituting Eq. (34) into Eq. (35), we have
oU
oF 1

¼ F 1
b
Et0

þ a

2Etsin2h

� �
¼ ef1

b
2
þ aR4=2

2sin2h

� �
ð36Þ
Solving for Eqs. (35) and (36), the local–global strain relationship can be described as
ef1 ¼ e0x
sin2hðbþ a sin hÞ
bsin2h þ aR4=2

ð37Þ

ef2 ¼ e0x
sin hðbþ a sin hÞR4=2

bsin2h þ aR4=2
ð38Þ
For a particular case, when a = b, h = 30� and R4 = 2, the results reduce to
ef1 ¼
3

10
e0x ef2 ¼

3

5
e0x ð39Þ
Strain state subjected to e0y
Similarly, we can apply a uniform strain e0y in the y-direction, as shown in Fig. 19. The force F2 can be

decomposed into Fv and Fh. The component Fv can be written as
F v ¼ F 2 cos h ¼ F 1 tan h ð40Þ

Following the same approach as above, we can obtain
oU
oF v

¼ F 1
tan h

b
Et0

þ a

2Etsin2h

� �
¼ ef1

1

tan h
b
2
þ aR4=2

2sin2h

� �
ð41Þ

oU
oF v

¼ a
2
cos he0y ð42Þ
F2

F1

b/2

a/2

θ

εy
0

x

y

Fv

Fh

Fig. 19. Model subjected to e0y .
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Solving for Eqs. (41) and (42), we have
ef1 ¼ e0y
asin3h

bsin2h þ aR4=2
ð43aÞ

ef2 ¼ e0y
asin2hR4=2

bsin2h þ aR4=2
ð43bÞ
For a particular case, when a = b, h = 30�, and R4 = 2, the results become
ef1 ¼
1

10
e0y ef2 ¼

1

5
e0y ð44Þ
5.1.2. Displacement compatibility

At the interface, when the facesheet is assumed to be rigid, the strain state can be obtained through strain
transformation as
ed1 ¼ e0x ð45aÞ

ed2 ¼ sin
2he0x þ cos2he0y ð45bÞ
5.1.3. Deformation incompatibility

An apparent strain incompatibility arises from the two displacement fields, which can be described as
Dei ¼ efi � edi ð46Þ

where i = 1,2 correspond to the flat panel and inclined panel, respectively.

5.2. Theoretical analysis

From the discussion in Section 5.1, we conclude that there are two distinct strain fields at the interface
and the mid-depth. This problem can be approached through two steps: firstly, the core wall is permitted to
freely move with stress q1 acting at the free edge (Fig. 20), resulting in a uniform strain state in the whole
plate, with the magnitude equal to the strain at interface edi . From basic assumptions, we have
q1 ¼ E0edi ð47Þ
Step 1 Step 2

Hinge

Roller

Roller

Hinge

Hinge

Hingeq1
q2

Fig. 20. Two-step simulation. Step1: Uniform stretch. Step 2: Additional strain.
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Secondly, q2 is applied at the free edge with three sides simply supported to induce additional strain,
as shown in Fig. 20. The stress q2 can be expressed as
q2 ¼ E0Dei ð48Þ

The final strain state is the summation of the strains from these two steps. The solution for the first step can
be easily obtained, whereas for step two, the solution requires further consideration; one approach is
to treat the problem as a plate with three sides simply supported under a uniform stress at the free edge,
leading to an explicit solution as given next.
The analytical model is shown in Fig. 21. The dimension a 0 = b/2 and a/2 for the flat and inclined panel,

respectively. Following the derivation in Section 4, when the displacement v is neglected for a plane-stress
problem, the governing equation is written as
E0 o
2u

on2
þ G

o
2u

og2
¼ 0 ð49Þ
As described in Section 4.2, the solution of the partial differential Eq. (49) can be obtained by using Fourier
series, defined as
uðn; gÞ ¼
X1
n¼1

Cn cosh
npn
hl

� �
þ Dn sinh

npn
hl

� �� �
sin

npg
h

� �
ð50Þ
with the boundary conditions:
uðn; 0Þ ¼ uðn; hÞ ¼ 0

uð0; gÞ ¼ 0 ð51Þ

Substituting the boundary conditions into Eq. (50), we find Cn = 0. Then Eq. (50) can be simplified to be
uðn; gÞ ¼
X1
n¼1

Dn sinh
npn
hl

� �
sin

npg
h

� �
¼

X1
n¼1

Dnf1ðn; n; gÞ ð52Þ
Then, in a similar manner as shown in Section 4, we obtain the strains as
enðn; gÞ ¼
ou
on

¼
X1
n¼1

Dn
np
hl
cosh

npn
hl

� �
sin

npg
h

� �
¼

X1
n¼1

Dnf2ðn; n; gÞ ð53Þ
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cngðn; gÞ ¼
ou
og

¼
X1
n¼1

Dn
np
h
sinh

npn
hl

� �
cos

npg
h

� �
¼

X1
n¼1

Dnf3ðn; n; gÞ ð54Þ
Next, we use energy concepts to obtain effective stiffnesses and interfacial stresses. The total potential
energy is
P ¼ U þ W ð55Þ

where
U ¼
Z Z

1

2
E0e2nðn; gÞ þ

1

2
Gc2ngðn; gÞ

� �
dndg ð56Þ
and
W ¼ �
Z h

0

q2uða0; gÞdg ð57Þ
The first variation of P, leads to necessary condition for equilibrium, or minimum potential energy, as
dP ¼ dU þ dW ¼ 0 ð58Þ

We can define the following displacement and strain gradients in terms of parameters D1,D2, . . .,Dm:
ouðn; gÞ
oDm

¼ f1ðm; n; gÞ ð59aÞ

oenðn; gÞ
oDm

¼ f2ðm; n; gÞ ð59bÞ

ocngðn; gÞ
oDm

¼ f3ðm; n; gÞ ð59cÞ
Then, substituting Eqs. (59b) and (59c) into the first variation of Eq. (56), we have
dU ¼
Z Z

½E0enðn; gÞf2ðm; n; gÞ þ Gcngðn; gÞf3ðm; n; gÞ	dndg
� �

dDm ð60Þ
Similarly, substituting Eq. (59a) into the first variation of Eq. (57), we have
dW ¼ �
Z h

0

q2f1ðm; a0; gÞdg
� �

dDm ð61Þ
Further, it can be shown that
inth0 sin
mpg
h
sin

npg
h
dg ¼ h

2
dmn ð62Þ
where dmn is the Kronecker delta defined as
dmn ¼
1 if m ¼ n

0 if m 6¼ n

�
ð63Þ
Then Eq. (60) becomes
dU ¼ E0ha2ðmÞ
2

Z a0

cosh2ðaðmÞnÞdn þ Ghl2a2ðmÞ
2

Z a0

sinh2ðaðmÞnÞdn
" #

DmdDm ð64Þ

0 0
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where
aðmÞ ¼ mp
hl

ð65Þ
Finally, substituting Eqs. (61) and (64) into Eq. (58), and considering dDm is an arbitrary value, Dm is
defined as
Dm ¼ ½1� cosðmpÞ	q2 sin½a0aðmÞ	
hla3ðmÞ
2

E0 sinhð2a0aðmÞÞ
4aðmÞ þ a0

2

� �
þ l2G sinhð2a0aðmÞÞ

4aðmÞ � a0
2

� �h i ¼ wðm; a0; hÞq2 ð66Þ
It is noted that Dm is only related to the uniform stress q2, that is, an explicit solution is given for Dm. Now,
introducing Dm into Eq. (52)–(54), the expressions for the displacement, normal strain and shear strain
can be obtained.
Next, we use the total strain energy, and corresponding strain energy density, to finally define the effec-

tive stiffnesses and corresponding stresses. The total normal strain is
eiðn; gÞ ¼ edi þ eniðn; gÞ ð67Þ

The total strain energy U is defined as
U ¼
XZ Z

1

2
E0ðeiðn; gÞÞ2 þ

1

2
Gðcngiðn; gÞÞ

2

� �
dndg ð68Þ
with the strain energy density given as
U � ¼ U
V

ð69Þ
Thus, the effective stiffnesses can be defined as
Exx ¼
o
2U �

oe02x
ð70aÞ

Eyy ¼
o
2U �

oe02y
ð70bÞ

Exy ¼
o2U �

oe0xoe
0
y

ð70cÞ
These effective stiffnesses correspond to homogenized unit cell stress (total force per cross sectional area A),
in terms of macroscopic strains, as follows
rx

ry

� �
¼

Exx Exy

Exy Eyy

� �
e0x
e0y

( )
ð71Þ
5.3. Verification

5.3.1. Stiffness

For verification purpose, the derived explicit closed-form solution is used to solve the same problem
studied by Becker (1998), where a = b = 4mm, t = t 0 = 0.05mm, h = 30�, and a set of core thickness h is
varied. The cell wall material is aluminum with Young�s Modulus E = 72.2GPa and Poisson�s ratio
m = 0.34. A finite element mesh of the representative unit cell is shown in Fig. 22. The stiffness vs. aspect



Fig. 22. Finite element mesh from Becker (1998).
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ratio curves calculated from Becker�s solution, the present closed-form solution and FE are shown in Fig.
23, where the discrete markers represent the FE results obtained from Becker (1998). Good correlations
between the present analytical results and FE results can be observed, which shows the accuracy of the
closed-form solution presented in this study. It should be noted that although different displacement func-
tions are adopted in Becker�s solution and in the present study, the difference between the two results for the
stiffness is not significant. This is because the stiffness is a global property, and it is not affected much by the
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form of the displacement function. However, it is argued that the stress distribution is greatly affected by
the choice of displacement function. The accuracy of the present solution for predicting stresses is illus-
trated next.

5.3.2. Stress distribution
To further validate the closed-form solution obtained, FE method and the analytical solution are both

employed to study the interfacial stresses for h = 4mm. Exploiting symmetry, the FE model with contour
plots of displacement u under e0x ¼ 0:01 is shown in Fig. 24, where the skins are also included. A contour
plot of shear stress is given in Fig. 25. Figs. 26–29 show the shear and normal stresses vs. distance under
Fig. 24. FE model with contour plot for displacement u subjected to e0x ¼ 0:01.

Fig. 25. Contour plot for rng subjected to e0x ¼ 0:01.
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corresponding uniform strains e0x ¼ 0:01 and e0y ¼ 0:01. The distance is represented by the contour coordi-
nate, from 0 to 2mm and from 6 to 8mm for the flat panel, and from 2 to 6mm for the inclined panel (see
Fig. 24). From Fig. 26–29, we can see that there is a good correlation between the FE and the present ana-
lytical results, which show the accuracy of the model derived in this study. It is interesting to note from
Figs. 26 and 28 that shear stress arises due to the in-plane stretch and reaches its maximum at the pa-
nel-intersection and diminishes towards the center of the cell wall. From Fig. 27 we can observe that the
force in the x-direction is carried mainly by the flat wall, whereas from Fig. 29, the force in the y-direction
is carried mainly by the inclined wall.
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5.4. Application

Using the closed-form solution derived in this study, a parametric study is carried out for the interfacial
shear stress at the corners. From Fig. 30, we can observe that S12 decreases as the aspect ratio increases, and
S12 approaches zero when the height reaches infinity. This is in agreement with a previous study, which sta-
ted that as h approaches infinity, an hexagonal core in regard of its in-plane properties can be treated as
being an isotropic continuum (Gibson and Ashby, 1988). We further note that since no tension force occurs
at the interface, the stress-state of the core panels under in-plane stretching is less critical than that under
transverse shear.

5.5. Summary and discussion for in-plane behavior

A closed-form solution is presented to study the in-plane behavior of sandwich core walls considering
skin effect. From the above results, the following conclusions can be drawn:
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1. Since the solution is based on equilibrium equations, it can predict both the stiffness and interfacial stress
distribution. Unlike existing solutions (Becker, 1998), the present formulation is explicit and easy to
implement, and in agreement with existing results, it can accurately model the in-plane stiffness.

2. The accuracy of this solution is verified through close correlations between FE and analytical results,
both in terms of stiffness and interfacial stresses.

3. Additional shear stress arises at the interface due to skin effect under in-plane stretching. An apparent
stress concentration can be observed at the corner of panel-intersection, making this location critical
in design.

4. Interfacial shear stress is highly dependent on the skin effect, but as a function of the height, with the
stress approaching zero when the core height becomes infinity.
6. Conclusions

This study is focused on developing an analytical model that permits the computation of stiffnesses as
well as interfacial stresses considering the skin-effect for hexagonal honeycomb sandwich, subjected to
in-plane and out-of-plane forces. An explicit analytical model is derived based on equilibrium equations,
where boundary conditions imposed by the skin effect are appropriately considered. From this study, we
can conclude:

1. The analytical solution can successfully predict the behavior of panels, accounting for the warping effect
exerted by the outer skins, both in terms of stiffness and stresses, as verified by FE results.

2. The skin effect is a localized phenomenon. The lower bound of the equivalent stiffness can thereby be
adopted if the aspect ratio is high enough, and it is suggested that the solution provided in this study
be adopted when the aspect ratio is low in order to more accurately model the structure. However,
the skin effect can significantly affect interfacial stress distribution, yielding a coupled stress state: a nor-
mal stress arises for transverse shear and a shear stress results from in-plane stretching. There is an
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apparent stress concentration at the panel corners, making this location potentially critical in design. For
in-plane stretching, the tensile stress is caused mainly by Poisson�s effect and is less significant than that
caused by transverse shear, and therefore, the out-of-plane shear behavior becomes more important
when considering interfacial stresses.

3. The skin effects described herein affect the stress distribution of both the flat and inclined panel, due to
the open cell configuration. This effect on the stress distribution becomes less significant in areas away
from the interface.

4. A parametric study is carried out on the interfacial shear stress: when the height approaches infinity, the
tensile stress approaches an asymptotic constant value under transverse shear, and the shear stress
becomes zero under in-plane stretching. The relationship between interfacial stresses and aspect ratio
is given, which can be used for the optimization of cell configurations.

5. The results provided in this study for interfacial shear stress, when combined with flatwise tension test
results, can be used for failure predictions.

6. It should be noted that the other stiffness components, such as Gxy, Gyz, and Ezz are not affected by the
skin effect, and they can be easily obtained. Thus, a complete set of stiffness prediction equations is avail-
able for computational models of orthotropic hexagonal sandwich panels.
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